Evolutionary game theory is widely applied in network attack and defense. +e existing network attack and defense analysis methods based on evolutionary games adopt the bounded rationality hypothesis. However, the existing research ignores that both sides of the game get more information about each other with the deepening of the network attack and defense game, which may cause the attacker to crack a certain type of defense strategy, resulting in an invalid defense strategy. +e failure of the defense strategy reduces the accuracy and guidance value of existing methods. To solve the above problem, we propose a reward value learning mechanism (RLM). By analyzing previous game information, RLM automatically incentives or punishes the attack and defense reward values for the next stage, which reduces the probability of defense strategy failure. RLM is introduced into the dynamic network attack and defense process under incomplete information, and a multistage evolutionary game model with a learning mechanism is constructed. Based on the above model, we design the optimal defense strategy selection algorithm. Experimental results demonstrate that the evolutionary game model with RLM has better results in the value of reward and defense success rate than the evolutionary game model without RLM.
Loading....